IBM Expands Its Power10 Portfolio For Mission Critical Applications

It is sometimes difficult to understand the true value of IBM’s Power-based CPUs and associated server platforms. And the company has written a lot about it over the past few years. Even for IT professionals that deploy and manage servers. As an industry, we have become accustomed to using x86 as a baseline for comparison. If an x86 CPU has 64 cores, that becomes what we used to measure relative value in other CPUs.

But this is a flawed way of measuring CPUs and a broken system for measuring server platforms. An x86 core is different than an Arm core which is different than a Power core. While Arm has achieved parity with x86 for some cloud-native workloads, the Power architecture is different. Multi-threading, encryption, AI enablement – many functions are designed into Power that don’t impact performance like other architectures.

I write all this as a set-up for IBM’s announced expanded support for its Power10 architecture. In the following paragraphs, I will provide the details of IBM’s announcement and give some thoughts on what this could mean for enterprise IT. 

What was announced

Before discussing what was announced, it is a good idea to do a quick overview of Power10.

IBM introduced the Power10 CPU architecture at the Hot Chips conference in August 2020. Moor Insights & Strategy chief analyst Patrick Moorhead wrote about it here. Power10 is developed on the opensource Power ISA. Power10 comes in two variants – 15x SMT8 cores and 30x SMT4 cores. For those familiar with x86, SMT8 (8 threads/core seems extreme, as does SMT4. But this is where the Power ISA is fundamentally different from x86. Power is a highly performant ISA, and the Power10 cores are designed for the most demanding workloads.

One last note on Power10. SMT8 is optimized for higher throughput and lower computation. SMT4 attacks the compute-intensive space with lower throughput.

IBM introduced the Power E1080 in September of 2021. Moor Insights & Strategy chief analyst Patrick Moorhead wrote about it here. The E1080 is a system designed for mission and business-critical workloads and has been strongly adopted by IBM’s loyal Power customer base.

Because of this success, IBM has expanded the breadth of the Power10 portfolio and how customers consume these resources.

The four pillars of IBM’s announcement IBM

The big reveal in IBM’s recent announcement is the availability of four new servers built on the Power10 architecture. These servers are designed to address customers’ full range of workload needs in the enterprise datacenter.

Power10 Scale-out server portfolio addresses the low and midrange workloads IBM

The Power S1014 is the traditional enterprise workhorse that runs the modern business. For x86 IT folks, think of the S1014 equivalent to the two-socket workhorses that run virtualized infrastructure. One of the things that IBM points out about the S1014 is that this server was designed with lower technical requirements. This statement leads me to believe that the company is perhaps softening the barrier for the S1014 in data centers that are not traditional IBM shops. Or maybe for environments that use Power for higher-end workloads but non-Power for traditional infrastructure needs.

The Power S1022 is IBM’s scale-out server. Organizations embracing cloud-native, containerized environments will find the S1022 an ideal match. Again, for the x86 crowd – think of the traditional scale-out servers that are perhaps an AMD single socket or Intel dual-socket – the S1022 would be IBM’s equivalent. 

Finally, the S1024 targets the data analytics space. With lots of high-performing cores and a big memory footprint – this server plays in the area where IBM has done so well.

In addition, to these platforms, IBM also introduced the Power E1050. The E1050 seems designed for big data and workloads with significant memory throughput requirements.

The Power E1050 changes the economics of delivering IT services IBM

The E1050 is where I believe the difference in the Power architecture becomes obvious. The E1050 is where midrange starts to bump into high performance, and IBM claims 8-socket performance in this four-socket socket configuration. IBM says it can deliver performance for those running big data environments, larger data warehouses, and high-performance workloads. Maybe, more importantly, the company claims to provide considerable cost savings for workloads that generally require a significant financial investment.

One benchmark that IBM showed was the two-tier SAP Standard app benchmark. In this test, the E1050 beat an x86, 8-socket server handily, showing a 2.6x per-core performance advantage. We at Moor Insights & Strategy didn’t run the benchmark or certify it, but the company has been conservative in its disclosures, and I have no reason to dispute it.

But the performance and cost savings are not just associated with these higher-end workloads with narrow applicability. In another comparison, IBM showed the Power S1022 performs 3.6x better than its x86 equivalent for running a containerized environment in Red Hat OpenShift. When all was added up, the S1022 was shown to lower TCO by 53%.

What makes Power-based servers perform so well in SAP and OpenShift?

The value of Power is derived both from the CPU architecture and the value IBM puts into the system and server design. The company is not afraid to design and deploy enhancements it believes will deliver better performance, higher security, and greater reliability for its customers. In the case of Power10, I believe there are a few design factors that have contributed to the performance and price//performance advantages the company claims, including

  • Use Differential DIMM technology to increase memory bandwidth, allowing for better performance from memory-intensive workloads such as in-memory database environments.
  • Built-in AI inferencing engines that increase performance by up to 5x.
  • Transparent memory encryption performs this function with no performance tax (note: AMD has had this technology for years, and Intel introduced about a year ago).

These seemingly minor differences can add up to deliver significant performance benefits for workloads running in the datacenter. But some of this comes down to a very powerful (pardon the redundancy) core design. While x86 dominates the datacenter in unit share, IBM has maintained a loyal customer base because the Power CPUs are workhorses, and Power servers are performant, secure, and reliable for mission critical applications.

Consumption-based offerings

Like other server vendors, IBM sees the writing on the wall and has opened up its offerings to be consumed in a way that is most beneficial to its customers. Traditional acquisition model? Check. Pay as you go with hardware in your datacenter? Also, check. Cloud-based offerings? One more check.

Customers have flexibility in consuming Power servers IBM

While there is nothing revolutionary about what IBM is doing with how customers consume its technology, it is important to note that IBM is the only server vendor that also runs a global cloud service (IBM Cloud). This should enable the company to pass on savings to its customers while providing greater security and manageability.

Closing thoughts

I like what IBM is doing to maintain and potentially grow its market presence. The new Power10 lineup is designed to meet customers’ entire range of performance and cost requirements without sacrificing any of the differentiated design and development that the company puts into its mission critical platforms.

Will this announcement move x86 IT organizations to transition to IBM? Unlikely. Nor do I believe this is IBM’s goal. However, I can see how businesses concerned with performance, security, and TCO of their mission and business-critical workloads can find a strong argument for Power. And this can be the beginning of a more substantial Power presence in the datacenter.

Note: This analysis contains insights from Moor Insights & Strategy Founder and Chief Analyst, Patrick Moorhead.